Structure versus function: a topological perspective on immune networks

Hart, E., Bersini, H., Santos, F. (2009). Structure versus function: a topological perspective on immune networks. Natural Computing, 9, (3), 603-624.


ISBN:
ISSN: 1567-7818

Abstract

Many recent advances have been made in understanding the functional implications of the global topological properties of biological networks through the application of complex network theory, particularly in the area of small-world and scale-free topologies. Computational studies which attempt to understand the structure–function relationship usually proceed by defining a representation of cells and an affinity measure to describe their interactions. We show that this necessarily restricts the topology of the networks that can arise—furthermore, we show that although simple topologies can be produced via representation and affinity measures common in the literature, it is unclear how to select measures which result in complex topologies, for example, exhibiting scale-free functionality. In this paper, we introduce the concept of the potential network as a method in which abstract network topologies can be directly studied, bypassing any definition of shape-space and affinity function. We illustrate the benefit of the approach by studying the evolution of idiotypic networks on a selection of scale-free and regular topologies, finding that a key immunological property—tolerance—is promoted by bi-partite and heterogeneous topologies. The approach, however, is applicable to the study of any network and thus has implications for both immunology and artificial immune system
[Read More]

Authors

Emma Hart
Director of CEC
e.hart@napier.ac.uk
+44 131 455 2783

Areas of Expertise

Bio-inspired Computing
The Bio-Inspired Algorithms group within the Centre for Algorithms, Visualisation and Evolving Systems is a large and thriving group with interests in nature-inspired computing that include Evolutionary Computing, Hyper-Heuristics, Artificial Immune Systems and Swarm Intelligence.

Associated Projects